
!

A Matrix Approach to Software Process Definition

David Schultz, Judith Bachman, Linda Landis (CSC)

Mike Stark, Sally Godfrey (GSFC)

Maurizio Morisio (Univ. of Maryland)

Introduction

The Software Engineering Laboratory (SEL) is currently engaged in a Methodology and Metrics program
for the Information Systems Center (ISC) at Goddard Space Flight Center (GSFC). This paper addresses

the Methodology portion of the program. The purpose of the Methodology effort is to assist a software
team lead in selecting and tailoring a software development or maintenance process for a specific GSFC

project. It is intended that this process will also be compliant with both ISO 9001 and the Software
Engineering Institute's Capability Maturity Model (CMM).

Under the Methodology program, we have defined four standard ISO-compliant software processes for the

ISC, and three tailoring criteria that team leads can use to categorize their projects. The team lead would

select a process and appropriate tailoring factors, from which a software process tailored to the specific

project could be generated. Our objective in the Methodology program is to present software process
information in a structured fashion, to make it easy for a team lead to characterize the type of software

engineering to be performed, and to apply tailoring parameters to search for an appropriate software
process description. This will enable the team lead to follow a proven, effective software process and also

satisfy NASA's requirement for compliance with ISO 9001 and the anticipated requirement for CMM
assessment. This work is also intended to support the deployment of sound software processes across the

ISC.

Background

The SEL is currently part of the Information Systems Center (ISC) at Goddard Space Flight Center
(GSFC). The ISC was formed in December 1997, by reorganizing Government personnel, projects, and
other resources from previously existing GSFC organizations. It comprises a number of application

domains, and represents a conglomerate of different organizational cultures. In particular, the various

predecessor organizations had employed a variety of approaches to software development. The evolution
and adoption of a single organizational culture, and a single set of recognized software processes, is a

challenge that ISC is presently facing.

In early 1999, the SEL directors met with each of the eight branch heads within the ISC, to determine how
the SEL could best serve their needs. The branch heads indicated that they would like to see the SEL

package the proven software technology that it had developed over 25 years, so that it could be applied
within the ISC. The Methodology study and the companion Metrics effort were two of the activities that
resulted from these discussions.

A key constraint that helped shape the new ISC culture was NASA's decision to seek registration under the
ISO 9000 suite of international standards. This decision increased the urgency for developing a standard

software methodology that could be used consistently across the ISC.

A brief note of explanation regarding the ISO 9000 suite may be in order. This suite of quality standards

was first published in 1987, as a set of five standards, ISO 9000 through ISO 9004. These standards

SEW_Paperl 11400.doc 1 November 14, 2000

J

specified minimum requirements for a quality system. A revised version of the ISO 9000 suite was

published in 1994 [1-5]. These standards, which were written primarily for the manufacturing community,
also had a strong and immediate impact upon the software community. The standard most frequently cited

for applicability in a software environment is ISO 9001. In response to a demand for guidance on how to
apply ISO 9001 in a software environment, ISO developed ISO 9000-3, "Guidelines for the application of
ISO 9001:1994 to the development, supply, installation and maintenance of computer software" [6]. A

new revision of the ISO 9000 suite is scheduled for publication in late 2000, and is currently available in
draft version.

In June and July of 1999, GSFC conducted a series of internal audits against ISO 9001. A subsequent
round of informal internal audits was conducted within the ISC around October 1999. In response to these

internal audits, the SEL established a working group of ISC team leads to develop recommendations for

bringing the ISC into conformance with ISO 9001. In November 1999, this SEL ISO team identified
recommendations in the areas of both methodology and metrics. [7]

The key recommendations of the ISC team leads that drove the present Methodology effort were as
follows:

Define a template-based approach to documenting software methodology

Organize information around developer activities, rather than around ISO concepts.

Support multiple life cycle models, including the incremental build model and the spiral model

Define methodology details separately for the following project types:

• Custom (new) software development

• Commercial off-the-shelf (COTS) or Government off-the-shelf (GOTS) based systems

• High reuse projects--this includes maintenance projects and the use of product lines; the key

element of a high reuse project is that the system architecture is almost completely defined at the

beginning of the project.

A second constraint that is expected to affect the ISC culture is NASA's recent decision to adopt the CMM.

We first became aware in June of this year that CMM would need to be addressed. Once the GSFC CMM
compliance requirements have been defined, we shall enhance the software processes to ensure that these

requirements are satisfied.

Description of the ISC Environment

Figure 1[8] illustrates the diversity of the application domains within the ISC: embedded flight software,

ground mission data systems, science data systems, advanced architectures, etc. The SEL sought to
develop a small set of standard processes that could be used within these diverse application domains; it

was not anticipated that a single process would be sufficient for the entire ISC. Even within a single branch
of the ISC, the breadth of project types and the absence of a well-defined organizational culture would

seem to preclude the imposition of a single standard software process across even one branch. We needed
to identify common elements of the many processes already in use so as to converge on a small set of

processes that could accommodate this diverse range of application domains.

SEW Paper_l 11400.doc 2 November 14, 2000

=Embe-clded space-cra_-in st--rum--e ntan d..............
hardware component softwares; FSW

F...

, Real-time ground mission data systems for
= I&T and on-orbit ops (e.g., s/c command &

i control, launch and tracking services)
=_= _ I ...

i End-to-end data systems=engineering Of _

miss!ort Systems development activities. _ _ '-_.

........... ; ie"-ceaaia'yslegs,:"c-iudS;7 1-:_ _ data processing, archival, I
i distribution, analysis & info man']

Advanced concept development
for archival, retrieval, display,
dissemination of science data

Off-line mission data systems !
(e.g., Command man., s/c mission
and science P&S, GN&C, NCC) i

_ scientific analysis tools, distributed]
; computing architectures !,

i Tools and services in support of information
i management

Figure 1. ISC Application Domains

Technical Approach

Previous Related Work

The approach we used in this research derives from a three-level life cycle/method/technique hierarchy of

software processes developed by Dr. Vic Basili [9]. Our work built on four predecessor SEL documents:

• Manager's Handbook [10]

• Recommended Approach to Software Development [1 I]

• NASA Software Management Guidebook [12]

• ISC Profile Report. [13]

The Recommended Approach and Manager's Handbook are "companion" documents that served for many

years as the SEL's primary guidebooks for software development and management. Developed for the

GSFC's Flight Dynamics Division and refined over 15 years in the SEL's "Experience Factory", the

guidance provided in these documents remains sound engineering practice for much of the ISC. The

activities listed in the current Methodology are consistent with those described in these two documents.

The Methodology team borrowed from the NASA Software Engineering Program's Software Management

Guidebook in defining the life cycles that are recommended for use with the current processes. The team

used the ISC Profile Report to identify the key software domains within the Center and the associated

software processes. These domains and processes were the starting point for the present research.

It should be noted that we are using the term "software process" here as it is used within the ISC. We

realize that, within the software engineering community, this term implies elements that are missing from

our model, particularly synchronization of activities and entry/exit criteria. We have chosen to concentrate

SEW_Paper_l 11400.doc 3 November 14, 2000

"_, " r

initially on the description of the software activities. Our intent is to develop a consistent set of methods,

products, and techniques before we address the time-sequencing of these activities, and the associated

synchronization and entry/exit concerns.

Research Activities

We began by reviewing the ISC Profile Report to familiarize ourselves with our customer base. The
Profile documents the SEL's work in baselining the newly formed ISC organization, and it identifies the

diversity of software projects and processes encompassed within the ISC. From the Profile we developed

a preliminary grouping of the software engineering activities the Center conducts.

We then collected and reviewed 16 existing ISC Product Plans written by ISC Team Leads to describe their

respective projects and plans for the technical work and project management. We characterized each
project by risk level, size of software team (which generally correlated with problem complexity), and

software process. We also noted the software life cycle model that each project claimed to follow. The
results are shown in Table 1 below. During the course of this project, the parameter initially labeled 'risk'

evolved to 'criticality of application', and we also identified aggressiveness of development schedule as a

key tailoring factor.

Table 1. Properties of the 16 Projects, as drawn from their Product Plans

Project
SIRTF IRAC

Methodology
Waterfall

Process T_cpe
New Development
with COTS

Team Size Schedule

Aggressive

Risk

Major risk is
schedule

DTAS Spiral New Development 2 Normal "No major
with COTS risks"

GUMP Structured Design 4 Normal Low riskNew Development

New Development "Liberal"Structured DesignHitchhiker HCU FSW

(Build 2)
Hitchhiker Ground Data:

ACE

Technical risk

Structured Design New Development 7 Normal Low risk
with some COTS

Hitchhiker Ground Data: Structured Design New Development 7 Normal Technical risk
Avionics with some COTS

Triana Ground Data Incremental Build 17 AggressiveHigh Reuse with
COTS / GOTS

Object Oriented

Design; 2 releases

Object Oriented
Design with
Incremental Build

4-8

10- 12Incremental Build

Triana Command / Data

Handling Flight S/W
Triana AOCS Flight
Software

EOS AM-1 FDS

Aggressive

Aggressive

Aggressive

High Reuse with
COTS

High Reuse with
COTS / GOTS

New Development

Multiple risks,

esp. schedule

Major risk is
schedule

Major risk is
schedule

Major risks are

MAP "Not applicable"

HESSI ITOS Incremental Build

Triana ITOS Incremental Build

with some COTS;

prototyping for
verification of FDS

design and

operational concepts
Test and

maintenance only

High Reuse

High Reuse

12

-6

~7

schedule and
external
deliveries

Aggressive

Normal

Normal

Primary risk is
schedule

No risks

identified

No risks

identified

SEW_Paper_l 11400.doe 4 November 14, 2000

• ¢ ,' ;

Project
ULDB ITOS

Methodology,
Incremental Build

Process Type
High Reuse

Team Size Schedule

Normal

Risk

No risks

identified

NMP / EO-1 GS (Multiple) New Development (very large) Aggressive Major risk is
with COTS / GOTS schedule

HST Payload FSW (Multiple) (very large) NormalMaintenance with

extensive

reengineering

No major risks
identified in

Product Plan

There were other evolutionary changes in the parameters that eventually came to be known as 'tailoring

factors'. At one point, we had three categories for size (small, medium, and large) and three also for

criticality (low, medium, and high). We soon determined that the processes would be essentially the same
for small and medium sized teams, and for medium and high criticality projects. So we were able to drop

the 'medium' categories as distinct drivers. In this manner, the tailoring factors evolved to their present set:
team size, aggressiveness of schedule, and criticality of application. These tailoring factors, along with

software process, became the taxonomy that we finally used.

Our next steps were (1) to group the projects according to this classification to identify representative
examples of each type of project, and (2) to meet with the software team leads of projects that were
representative of the different categories in our taxonomy. We interviewed these team leads to clarify
information in the Product Plans and to obtain additional details about the software processes they followed

and the software life cycles that they employed. As a result of these interviews, we were able to converge

on a set of software processes and software life cycles that typify the ISC environment.

We determined that, despite variations in project terminology, and frequent use of COTS or GOTS, most

ISC projects actually utilized one of four software processes:

• New Development
• Maintenance

• High Reuse

• Prototyping.

The four software life cycle models that we identified were:

• Waterfall

• Incremental Build

• Prototyping

• Spiral.

Software Process Description

Using the SEL's Recommended Approach as our starting point, we prepared an initial high-level
description of a generic process for New Software Development. We then reviewed the 16 Product Plans

and modified the generic process to reflect the processes that were actually being used within the ISC. We
added the tailoring factors to reflect how the processes were actually adjusted for small teams, aggressive

schedules, and high criticality. Finally, we developed separate initial, very concise process descriptions for
Maintenance, High Reuse, and Prototyping.

We organized these process descriptions in terms of 'activity groups', which is a concept first put forth in
IEEE Std 1074-1998, "Standard for Developing Software Life Cycle Processes." [14]. Activity groups are

simply collections of activities that together accomplish a single well-defined function, and produce a

single key product. For example, the Requirements activity group is comprised of activities such as

SEW_Paper_l 11400.doc 5 November 14, 2000

definingsoftwarerequirements,defininginterfacerequirements,defininguserinterfacerequirements,
developingderivedrequirements,andprioritizingrequirements.

Notethatanactivitygroupisnotthesameasaphaseofthesoftwaredevelopmentlifecycle.Inasoftware
lifecyclemodel,aphasereferstoaperiodoftime.Forexample,wecanspeakoftheImplementation
(sometimescalled'Coding')phase.Underthetraditionalwaterfallmodel,thisphaserepresentstheperiod
oftimeduringwhichcodingisperformed.Anactivitygroup,ontheotherhand,isacollectionofrelated
activities,butthereisnoimplicationthattheseactivitiesareperformedwithinaspecificperiodoftime.
Theactivitiesofasingleactivitygroupmaybe(andusuallyare)performedovermultiplephases.The
teamleadcanselectasoftwarelifecyclemodelanduseit todevelopatimesequencingoftheactivitiesin
theselectedsoftwareprocess.

Weidentifiedsixactivitygroupsthatwereuniformacrossallofourstandardprocesses:Requirements,
Design,Implementation,Test,Delivery& Support,andCross-Cutting.Cross-Cuttingactivitiesarethose
activitiesthattypicallylastthroughouttheentiresoftwarelifecycle,suchastaskmanagement,
configurationmanagement,qualityassurance,documentpreparation,andtraining.

Eachoftheseactivitygroupscomprisesactivitiesthat,together,performoneormorespecificfunctions.
TheactivitygroupsandtheirrespectivefunctionsarelistedinTable2.

Table 2. Functions of the Six Activity Groups

Activity Group

Requirements

Design

Implementation
Test

Delivery and Support
Cross-Cutting

Functions

Reach agreement with the customer on what the system is intended to

accomplish
Define the structure of the software system, and the function of each

component
Code and unit test each software module

Perform the required levels of testing (e.g., build/release, system, and

acceptance testing) to validate the software system

Transition from development mode to operational mode
Perform ongoing supporting activities that transcend individual activity

groups, but are necessary for a successful project

These activity groups fit into a four-level hierarchical model, as shown in Figure 2. We can view this

hierarchy as a product line. That is to say, once we have selected a process type, identified the activities to
be performed within each activity group, and defined the techniques to be followed, we have defined a

software process tailored for a specific project. The two highest levels of the hierarchy, the software
process type and the activity group, are invariant. A given ISC project will always follow one of four set

processes (New Development, High Reuse, Maintenance, or Prototyping). Similarly, the selected process
will always include six activity groups (Requirements, Design, Implementation, Test, Delivery and

Support, and Cross-Cutting). At the third level, activities within the activity groups vary somewhat from
one project to another. The techniques, on the lowest level, exhibit considerable variability from project to

project.

SEW Paper_l 11400.doc 6 November 14, 2000

l Software
Process Type

Activity
Group

Activity
(Method)

Technique

Definition (Review Code "x) Activity n

Figure 2. Conceptual Methodology Model

Software Process Depiction

Because we needed to specify the conditions under which certain activities would be performed, the

process descriptions were phrased in structured language, similar to pseudocode or program design

language (PDL), employing IF-THEN loops and similar constructs. For each actual step to be performed, a
more detailed description was written. Later, to simplify the description, we used hyperlinks to connect the

steps in the process descriptions with their respective detailed descriptions. It was thus possible to read the
entire description of a process without being distracted by the details of the individual steps.

The problem with this pseudocode representation was that it required one description for each software

process and for each combination of project drivers. For example, we needed one description for the New
Development process to be followed by a small team, on a low-criticality application, under an aggressive
development schedule. We had a different description for the New Development process to be followed by

a large team, on a high-criticality application, under a lenient development schedule. With three project
drivers, and three values for two of them, two values for the third, and four process types, we would

potentially need 3x3x2x4 = 72 separate process descriptions. It would have been difficult for us to

compare these 72 process descriptions and identify the similarities and differences among them.

This problem was resolved by switching to a matrix representation of the software processes. The

pseudocode and the steps to be followed were identified in the left-hand column of the matrix. Each
combination of tailoring factors (e.g., small team, aggressive schedule, critical application) was assigned

one of the remaining columns, and an 'X' in that column was used to indicate whether each step of the
process was to be performed for each type of project. (An example of a process matrix is contained in the

Appendix.) Hyperlinks were used, as before, to provide links to the associated detailed information.

Use of the matrix approach greatly simplified the development, presentation, and review of the process

descriptions. The matrix approach also suggests an automated approach for future development: after the

process type and drivers are selected, the activity list for the project could be generated automatically. The
resulting "tailored" process could then be inserted or referenced in the appropriate portion of the Product

Plan. The complete model for our approach to process tailoring is shown in Figure 3.

SEW_Paper_l 11400.doc 7 November 14, 2000

OnlineDocumentation_ LifeCycle

Project Inputs
_-" Life Cycle Selection

_" Process Selection

)" Project-Unique Activities Selection

;,- Tailoring Factors Selection

ISC Process Definition

] Processes Activity Groups] [Tailoring Factors

!O,ore,i
Process _ ,

i i
Figure 3. Software Development Process Model

Verification and Validation

In the course of this research, we used three levels of verification and validation to assess the suitability and

usability of our work products:

• Review of work products within the Methodology working group

• Review of work products by working group of ISC team leads (see under 'Background' above)

• Occasional open forums (such as this Workshop) at which our work is presented.

As of this writing, these work products are:

• Hypertext overview of the process descriptions

• Set of definitions (based on IEEE standards and the CMM) that resolve standard software engineering

and ISO terminology

• New Software Development Process matrix
• Maintenance Process matrix

• High Reuse Process matrix.

Using the matrix representation described above, each process provides for tailoring according to the

following three tailoring factors:

• Team size (small/medium/large)

Schedule (normal/aggressive)

• Criticality of application (Critical/non-critical).

The five work products have all passed through the first three levels of our V&V process. They have not

yet been subjected to a fourth level of V&V: operational use of the processes by specific GSFC projects
and teams. This activity will begin shortly, when actual software projects at GSFC begin using these

processes.

SEW_Paper_l 11400.doc 8 November 14, 2000

Lessons Learned

Benefits of the Matrix Representation

The matrix representation of a software process turned out to be a key factor in the success of the
Methodology effort. The matrix made it easier for both developers and reviewers of a software process to

compare the differences among different tailored versions--for example, to compare its use for small teams
against large teams. The use of a table-like matrix also made it easier to deal with multiple levels of nested

loops within the pseudocode representation of the processes.

Significance of the Software Life Cycle Model

At the outset of this work, it was felt that both the application domain and the software life cycle model

selected would be significant factors in the selection and tailoring of a software process. This turned out
not to be the case. The software life cycle determines when and how often each activity will be performed,

but has little impact on the detailed description of the activity. Similarly, the differences due to application
domain become significant only at the Technique level of the hierarchy. Organizing the process

descriptions by activity group allowed us to define processes in a manner that gave the projects greater
flexibility in selecting their life cycles. By defining activity groups as distinct from life cycle phases,
activities were not constrained to a particular phase and could be repeated as needed, both throughout the

life cycle and across different application domains.

For example, on a project that followed the Incremental Build life cycle model, the activities in the
Implementation and Test activity groups could be repeated for every build. But this model makes no

provision for iterations through the Requirements activities. Using activity groups, this is not a problem.
Similarly, the Prototyping and Spiral models involve multiple iterations of the Requirements and Design

activity groups; these, too, are easier to represent using activity groups.

Process Integration

A lesson that we learned from the walkthroughs was that the Team Leads were searching for common

elements among the processes. We, as process engineers, tended to focus on the differences between the
processes. The Team Leads, however, as software developers, sought to reduce the number of differences

among the processes. In particular, they suggested that the New Development and High Reuse processes
could be merged into one. We are presently examining the implications of that proposal. It remains to be
seen whether the processes will become more differentiated once software teams actually begin using these

standard processes and providing operational feedback.

Future Work

There are five areas of work that we hope to accomplish in the next two years:

• Expansion of our model to incorporate software products and tools, entry/exit criteria, and

synchronization of activities

• Completion of the Prototyping Process

• Incorporation of operational feedback from actual GSFC projects that use the Processes

• Modification of our process model to address CMM

• Development of a web-based tool to support selection of a software process and the documentation of

that process in a project's Product Plan.

SEW Paper_l 11400.doc 9 November 14, 2000

Conclusion

This work is significant for two reasons. First, we have been able to identify common elements in a

complex environment of diverse application domains. This work provides a foundation on which we can
develop appropriate techniques and product definitions that will allow the ISC to employ a consistent

approach to software engineering development, while allowing optimization for a given project. This in
turn will permit the collection of a consistent set of software metrics across a wide range of project types,

and the continuous improvement and refinement of our software engineering knowledge base.

Second, we have developed a simple tool (the matrix) for describing an important aspect of software
processes. This tool greatly facilitated both the presentation and the review of the processes and their

component activities. We expect that it will aid us in defining requirements for a more automated, web-
based tool that will be useful to software team leads.

Acknowledgements

The GSFC ISC Team Leads who developed the ISO Methodology and Metrics requirements, and who

participated in the verification and validation of the Methodology work products, are listed below:

Lisa Shears (Code 582)
Scott Green, Terri Wood (Code 583)

Karen Keadle-Calvert, Dan Mandl, Tom Taylor (Code 584)

Jeff Lubelczyk (Code 586).

The authors are grateful to Steve Condon, who serves as CSC team lead for this work and has participated

in the Methodology team meetings from the inception of this project. Gary Meyers, of the GSFC ISO
study team, participated in the Methodology work from its inception, and provided very helpful review

comments at every stage. Mike Tilley, of Raytheon Corp., participated in this work as a representative of
the Flight Software Branch (Code 582) of the ISC. The concept of a tabular representation of a software

process was originally Mike Tilley's; Gary Meyers proposed some very helpful modifications to Mike

Tilley's original representation.

SEW Paper_l 11400.doc 10 November 14, 2000

E_

o
09

cz

o_

_o

r-
II "--

II :_ e-
1.1. _ , I--

0

E
.X E

-_ ._
0

a. o _
--_ _

09 _

X II II "'),,, xo#_

0

__ -J

<

o

o x
x

0

0

I.

2
L_
-r
h-

-o

0

c-

O

r"

N
e-
o

&

i

o

,4

0

Z

e.,.i
o

0
o

--4-

IX

X X

X

/ °i

, ._

m_e_

2

t_

Z

o

-k

0

0

0

0

x

.t-

o

-_._

e- I,_

. !
0

o _

0

o i

LI.

i

.z./ _ i_
UJ _ "._

"r"I "_ _.

E I'= ! ,_
_ i 1.. i

(_ .--!

-, _

_ I::

r_

+-

r.

0
03

t-

=8

o+

>,. >,._m

++++,_-+_,+

+!,
o._. ,- ._m
I1 li _- ,C

-- _ I--

"o
0

o
E
E

+o

o

"-- _ II

__ "_

II I!

e"

--I

+

OE

o>® 3_

o

ul--

o3

z _

+_ -_

Jl--

e.O

+° /++++z _

0
>
L-

r--

0

F-

¢.9 _ 8

l._ 0_
"_ o '_

•_, <

o x.
:4 :,<

4< 14<

io i

Eo

[o

I

I.IL

I .

i.e

+ ,,,.
O)

0
4..+
.:....

>

" C

c
I r-

i a.
i "0

I "m
" E
I o

i" +j

I
I

I

_J

+__

,_e I

._!
ml

k_

''i

I

C

_D

ID

ID

0

c-

O

I o & _.
I

+-

rw
, _ -0

• "-- e- ,...

e- "0 "1- '" "-"

• E _ o --

.-=_,-_ rr
_t o ,,,
• 0 -J

_ u_ __. cu

o-
>

iv,
e-

e-

e_

m

e-

E
0

LL

0
Z
13.1

e..
.m
@@

-,@

@

@

t',.
,8
E

0
C_

§
t'4

>
0
;z:

tj.

I

r-:.l
Or)

References

[1] ISO 9000-1 :1994, "Quality Management and Quality Assurance Standards--Guidelines for Selection
and Use"

[2] ISO 9001:1994, "Quality Systems--Model for Quality Assurance in Design, Development, Production,

Installation, and Servicing"
[3] ISO 9002:1994, "Quality Systems--Model for Quality Assurance in Production, Installation; and

Servicing"

[4] ISO 9003:1994, "Quality Systems--Model for Quality Assurance in Final Inspection and Test"
[5] ISO 9004-1:1994, "Quality Management and Quality System Elements--Guidelines"

[6] ISO/DIS 9000-3, "Guidelines for the application of ISO 9001 to the development, supply, and

maintenance of computer software"
[7] M. Stark, L. Shears, S. Godfrey, S. Green, T. Wood, D. Mandl, K. Keadle-Calvert, T. Taylor, J.
Lubelczyk, "Recommendations for Methodology and Metrics: Implementing ISO9000 in the ISC," GSFC

white paper, November 1999
[8] Howard Kea, "ISC Overview Paper for Software Engineering," presented at the 23_dAnnual Software

Engineering Workshop, GSFC, Greenbelt, MD, December 1998

[9] "Evolving and Packaging Reading Technologies," Victor R. Basili, Journal of Systems Software, 1997,

Volume 38, pp. 3-12.
[10] "Manager's Handbook for Software Development, Revision 1," SEL-84-101, Software Engineering

Laboratory, November 1990
[11] "Recommended Approach to Software Development, Revision 3," SEL-81-305, Software Engineering

Laboratory, June 1992
[12] "Software Management Guidebook," NASA-GB-001-96, National Aeronautics and Space
Administration, November 1996

[13] "Profile of Software at the Information Systems Center," SEL-99-001, Software Engineering

Laboratory, November 1999
[14] "Standard for Developing Software Life Cycle Processes, IEEE Std 1074-1998, Institute of Electrical

and Electronics Engineers, December 1998
[15] Scott Henninger, "Using Software Process to Support Learning Software Organizations," presented at
the 25 t_ Annual Software Engineering Workshop, GSFC, Greenbelt, MD, November 2000

SEW_Paper_l 11400.doc 15 November 14, 2000

